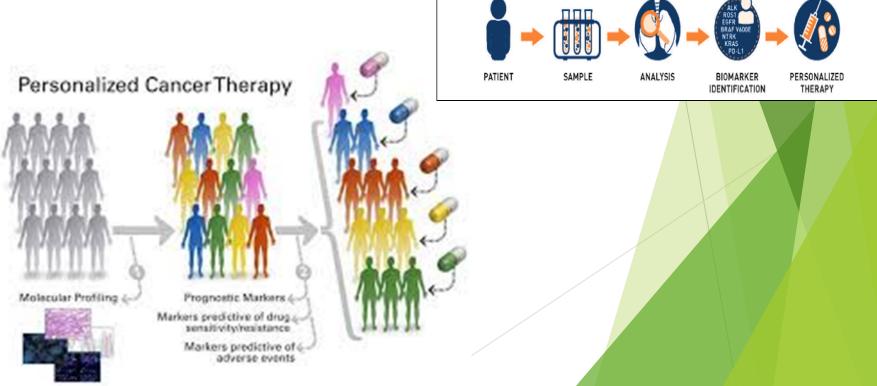
Precision Oncology How, why and when?

Dr Tony Dhillon, Consultant Medical Oncologist, Royal Surrey Hospital, Guildford, Surrey, UK. Alternative title from Stefan Shuster

Indiana Dhillon - Raiders of the lost NTRK...


Disclosures

- I have had research funding from BMS, Merck Serono and Novartis
- I had had honorarium from Everything Genetic, Servier, Guardant, Caris, Eli Lilly, Sanofi-Aventis, Amgen and MSD

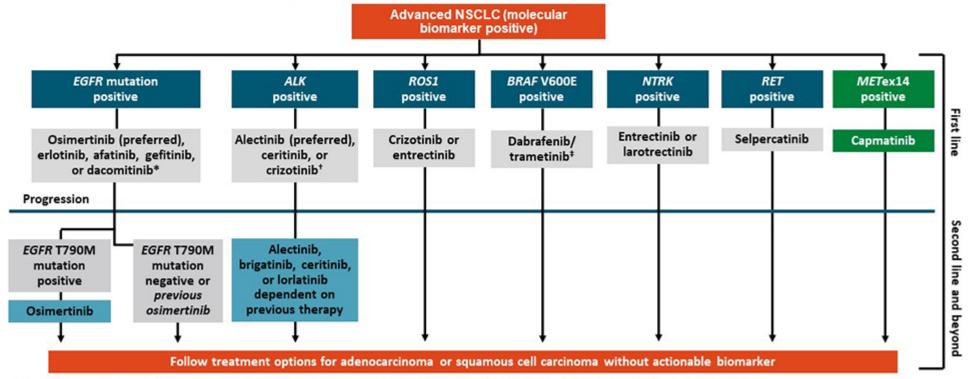
Precision oncology

Molecular profiling of tumours to identify targetable alterations

DATAR <u>Cancer Genetics</u>

By analyzing tumor tissue and blood samples, doctors can learn the details of a patient's specific tumor.

If certain biomarkers are identified, cancer therapy can be personalized for each patient.


What is precision oncology?

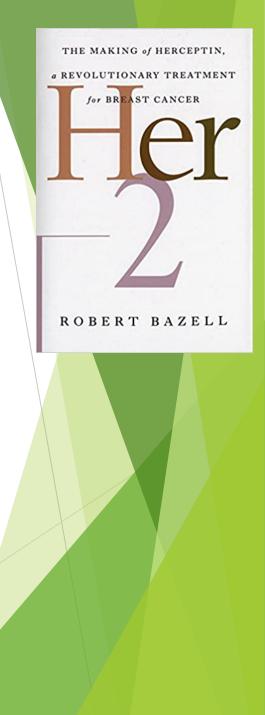
The right drug for the right patient at the right time

Genomic characteristics- mutations, fusions, deletions..

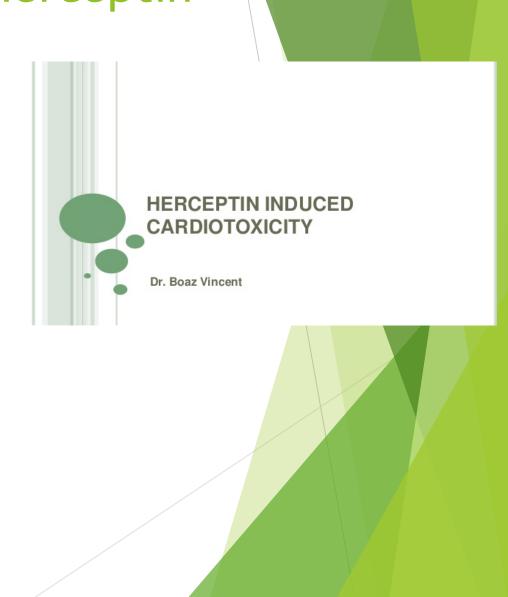
- Somatic and germline
- Protein characteristics over (expression)
- Based on the belief that histology is insufficient to guide treatment and that molecular alterations result in many different kinds of cancer

Current Treatment Paradigm for Molecular Biomarker– Positive Advanced NSCLC

*Afatinib, dacomitinib, erlotinib, gefitinib, osimertinib approved for EGFR exon19del, exon 21 L858R; afatinib for EGFR G719X, S768I, L861Q. *Brigatinib under priority review by the FDA for first-line ALK positive NSCLC. *Or as second-line after CT.


A bit of history... HER2 and the development of herceptin

- Late 1980s: Dennis Slamon et al; discover that up to one quarter of breast cancer have overexpression of HER2 and that patients with these tumours appear to have a poor prognosis.
- 1987, 1992: Other researchers show that HER2 overexpression induces tumour growth
- 1992 Genentech engineers a humanized HER2 antibody and begin clinical trials
- How to choose which patients should be treated?

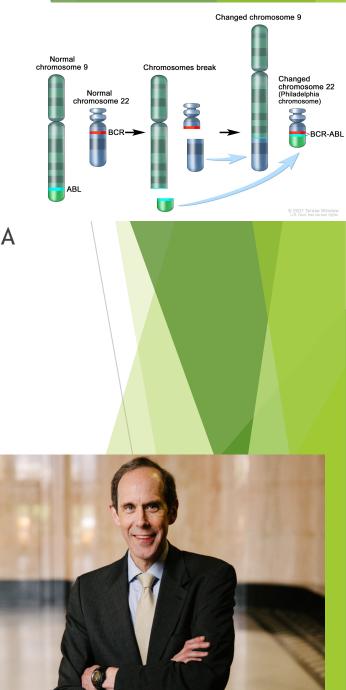

A bit of history... HER2 and the development of herceptin

- FDA approval based on 2 pivotal studies; patients had HER2 2+ or 3+ tumours t
- Phase II single agent: response rate of 12%, median response lasted 9.1 months, median survival 13 months
- Phase III RCT of 1st line chemo ±Herceptin- higher response rate (50% vs 32%), improved median survival (25.1 vs 20.3 months)

HER2 and the development of Herceptin

But..emerging cardiac toxicity- 5% cardiac dysfunction

Another magic bullet..



The long road to Gleevec

- ▶ 1845: CML described
- 1960: Novell and Hungerford describe the minute chromosome present in the blood of 7 patients
- Early 1970s: Caspersson and O' Riordan and colleagues identified the minute chromosome as #22, Rowley identified its balance translocation with #9.
- 1970s/1980s Retrovirus work performed work to identify oncogenes- including c-abl, translocation from 9q to the breakpoint cluster region of 22q in patients with CML.

The long road to Gleevec

- Mid-1980s: Davis and Ben-Neriah and colleagues find that the resulting mRNA transcript is a tyrosine kinase
- 1990: Heisterkamp and colleagues identify BCR-ABL translocation as both necessary and sufficient to induce CML
- Early 1990s: High throughput screens of chemical libraries the 2phenylaminopyrimidnines as promising inhibitors of BCR-ABL.
- 1996: Druker and colleagues publish in vitro and in vivo data on imatinib

The promises and limitations of technology

IHC evaluation of protein expression, FISH for translocations

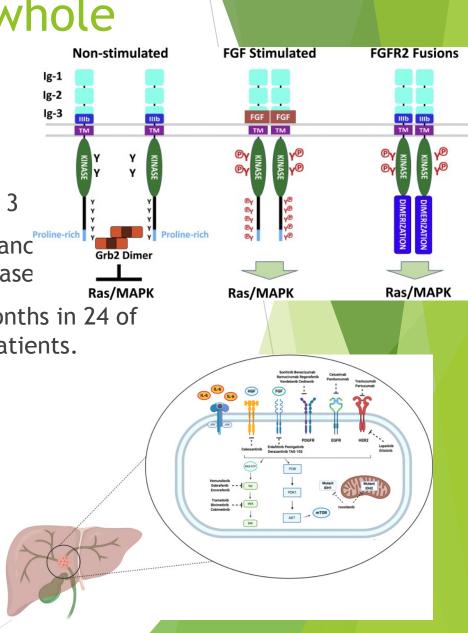
- Mutational hotspot testing
- Next generational sequencing
- > ctDNA analyses; whole exome or whole genome sequencing; proteomic analyses, DNA methylation patterns
- Information that is not actionable
- Intratumoral heterogeneity
- Driver vs passenger mutations
- Temporal Heterogeneity

Clinical examples of benefits of whole genome sequencing..

- ▶ 40 year old female presenting with weight loss and fatigue
- Mother has Lynch Syndrome (dMMR)- manifested as MSI-High
- Found to have metastatic colon cancer (peritoneal mets) (adenocarcinoma)
- IHC performed pMMR!
- We know that we miss 10% of MSI-High patients by using simple IHC for MMR
- Used Next-Generation Sequencing (NGS): rapidly examines and more broadly detects DNA mutations, copy number variations and gene fusions across the genome
- Results shows MSI-High

Clinical examples of benefits of whole genome sequencing..

- Patient is now eligible for IO which gives this young patient of a long durable response or even cure- not the case with standard cytotoxic chemotherapy
- Sequencing revealed the MSI-High!!


Clinical examples of benefits of whole genome sequencing..

- 63 male metastatic intrahepatic cholangiocarcinoma
- Standard chemotherapy Gemcitabine and Cisplatin-one size fits all
- > Data shows 50% of cholangiocarcinoma's have actionable mutations!
- Only MMR done on NHS! But drugs for actionable mutation are out there!!
- Patient asked me- any personalise my treatment?
- He paid for sequencing

Clinical examples of benefits of whole genome sequencing..

- Found to have FGFR fusion protein
- Pemigatinib- selective, potent, oral inhibitor of FGFR1, 2, and 3
- ► FIGHT-202 trial Pemigatinib for previously treated, locally advanc[™] metastatic cholangiocarcinoma: a multicentre, open-label, phase
- The median DOR was 9.1 months with responses lasting \geq 6 months in 24 of the 38 (63%) responding patients and \geq 12 months in 7 (18%) patients.

Summary

- Precision oncology has a long and fascinating history
- Right drug- right time- right patient!!
- Limitations!!
- Maximise information about the patient's cancer to make the best decisions for the management of patients cancer.
- Future includes using ctDNA temporally, RNA and protein profiles and microbiome signals to make treatment decisions.